Spectral Clustering by Ellipsoid and Its Connection to Separable Nonnegative Matrix Factorization
نویسنده
چکیده
This paper proposes a variant of the normalized cut algorithm for spectral clustering. Although the normalized cut algorithm applies the K-means algorithm to the eigenvectors of a normalized graph Laplacian for finding clusters, our algorithm instead uses a minimum volume enclosing ellipsoid for them. We show that the algorithm shares similarity with the ellipsoidal rounding algorithm for separable nonnegative matrix factorization. Our theoretical insight implies that the algorithm can serve as a bridge between spectral clustering and separable NMF. The K-means algorithm has the issues in that the choice of initial points affects the construction of clusters and certain choices result in poor clustering performance. The normalized cut algorithm inherits these issues since K-means is incorporated in it, whereas the algorithm proposed here does not. An empirical study is presented to examine the performance of the algorithm.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering
A recent theoretical analysis shows the equivalence between non-negative matrix factorization (NMF) and spectral clustering based approach to subspace clustering. As NMF and many of its variants are essentially linear, we introduce a nonlinear NMF with explicit orthogonality and derive general kernelbased orthogonal multiplicative update rules to solve the subspace clustering problem. In nonlin...
متن کاملONP-MF: An Orthogonal Nonnegative Matrix Factorization Algorithm with Application to Clustering
Given a nonnegative matrix M , the orthogonal nonnegative matrix factorization (ONMF) problem consists in finding a nonnegative matrix U and an orthogonal nonnegative matrix V such that the product UV is as close as possible to M . The importance of ONMF comes from its tight connection with data clustering. In this paper, we propose a new ONMF method, called ONP-MF, and we show that it performs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.01531 شماره
صفحات -
تاریخ انتشار 2015